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Abstract

The title (R)-diacid has been found to self-assemble as hydrogen-bonded cyclotetramers in solution as well as in
the solid phase; in the crystal the tetramers are stacked into chiral columns. In contrast, the racemic diacid forms
infinite zig-zag chains of molecules of alternating chirality. © 1999 Published by Elsevier Science Ltd. All rights
reserved.

The fascinating architecture of achiral zeolites1,2 inspires the design of chiral microporous frameworks
employing supramolecular self-assembly3 as the synthetic tool. Our recent discovery that biphenyl-
2,2′,6,6′-tetracarboxylic acid1a (1a; X=Y=COOH) self-assembles, in crystal, under formation of a
two-dimensional network set up from cyclotetrameric hydrogen-bonded square compartments4 opens
interesting vistas in this direction. The stereochemistry of the supramolecular squares attracts particular
attention. In contrast to the individual molecules of the tetraacid1a, which possessD2d symmetry and
are thus achiral, the self-assembled cyclotetramers possessD4 symmetry (Fig. 1) and are chiral. Squares
of opposite chirality alternate4, however, in the infinite grid which is accordingly achiral.

Homochirality of the supramolecular network can be obtained if the individual self-assembling
molecules (tectons) are chiral and enantiomerically pure. The requisite stereochemical transformation
of the achiral tecton1 (X=Y) can be attained by a pairwise differentiation of theorthosubstituents giving
rise to chiral molecules2 (X 6=Y; C2 symmetry). If both substituents X and Y in2 are endowed with
hydrogen-bonding ability, infinite homochiral square networks can result.5 If only one substituent (X) is
capable of hydrogen bonding, discrete homochiral squares ofD4 symmetry should be produced. We have
chosen the (R)-isomer of the title diacid2a (2a; X=COOH; Y=CH3 ) as a simple model for self-assembly
into the discrete chiral cyclotetramers.
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Figure 1. Formation of tetramers from1 and2

Single crystal X-ray diffraction of the enantiopure6 diacid (R)-2a shows7 that there are two crystallo-
graphically independent molecules participating in the cyclotetramer formation (Fig. 2). The two mole-
cules (A and B) differ slightly in their conformation, the dihedral angles subtended by the mean aromatic
planes being 82.70(7)° in A and 80.82(8)° in B. More marked differences appear in the orientation of
the carboxyl groups: the aromatic vs. COO dihedral angle8 being 42.1(2)° [C(17)] and 26.2(1)° [C(27)]
for molecule A but 5.8(4)° [C(37)] and 21.9(1)° [C(47)] for molecule B. As a consequence, the resulting
cyclotetramer is distorted from the ideal arrangement. Taking into account the van der Waals radii, the
space inside the distorted cyclotetramer is approximately 6.8×1.8 Å.

Figure 2. View of the tetramer of (R)-2a (ORTEP, 30% probability ellipsoids). Hydrogen bonds are drawn as dotted lines
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As can be seen in Fig. 3, the cyclotetramers are stacked in an eclipsed manner along the crystallo-
graphicb-axis resulting in chiral columns generated by translation. The distance between the tetramers
in this direction is 9.012 Å (=b) which excludes any possibility of aπ-interaction of the phenyl groups.
The stacks are arranged in a parallel manner in the remaining two directions (Fig. 4A). The chiral square
and column-forming ability is a consequence of the enantiopure diacid2a. Heterochiral alignment is
preferred by the racemic diacid. In the crystal of the racemate,9–11 the molecules of alternating chirality
are linked by double hydrogen bonds into zig-zag chains (Fig. 4B).

Figure 3. Perspective view of the column of (R)-2a tetramers down theb-axis. Oxygen atoms are drawn as circles of van der
Waals diameter

Figure 4. Comparison of crystal packing of (R)-2a (cyclotetramers, A) and (RS)-2a (zig-zag chains, B)

Notably, the fundamental difference in self-assembly of the homochiral and racemic diacid2apervades
in low polar solvents. Vapour pressure osmometry of the homochiral diacid (R)-2a indicates an apparent
degree of association of∼4 in CHCl3 solution12 indicating formation of the discrete cyclotetrameric
species. In contrast, polymeric chains (evidenced by the X-ray studies) prevail with the insoluble racemic
form (RS)-2a under comparable conditions.

To our best knowledge, the above results represent the first experimental demonstration of the
fundamental difference in the self-assembly of an enantiopure biaryl diacid and its racemate, suggesting
at the same time a new access to the design of chiral microporous structures. The simplicity of the biaryl
will facilitate a structure tuning study directed to expansion of the effective diameter of the chiral cavities
inside the self-assembled squares and columns (channels).
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